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Abstract  
 

Background: Several possibilities exist for analyzing continuous endpoints in randomized clinical trials. 
These include regressing post-treatment response, absolute change from baseline, or percent change from 
baseline on factors (gender, region, etc.) with/without baseline response as a covariate. If response 
variable follows a Gaussian distribution, the percent change from baseline will be the ratio of two 
correlated Gaussian distributions. The assumption that percent change from baseline follows a Gaussian 
distribution may be incorrect and biased. Additionally, missing data could complicate the behavior of the 
percent change variable. It is also shown by Vickers (Vickers, 2001) that percentage changes from 
baseline are statistically inefficient when analyzed traditionally. 
Methods: We propose an alternative solution using the Delta method to get estimates under different 
missing data imputation techniques and investigate the distribution for percent change from baseline for 
all values in numerator and denominator except zero. 
Results: Delta method estimates on simulated data were compared with traditional point estimates with 
confidence intervals. 
Conclusions: The Proposed method provides results that are better, and this study would be useful to 
researchers in choosing methods for analysis and decision-making when the endpoint of interest is the 
ratio of correlated Gaussian distribution, and the data has missing responses. 
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1. Introduction 
 

Using Percent change from baseline for continuous endpoints in clinical trials is quite common. Consider 
the percent change for continuous outcome from endpoint to baseline in clinical trials, the measurement before 

start of treatment administration ( ) and at the end of treatment period ( ) are assumed to be following 

Gaussian distribution with pdf (William, Matthew, 1984) 
 

 
 

 
(1) 

 
We simulated of sample size 800 (sample size not chosen with specific power) for Bivariate Gaussian distribution 
function (pdf) in equation (1) under each of the following correlations -0.9, -0.6, -0.2, 0.3, 0.7, 0.9 with unit 
standard deviation for both variables and the mean vector as [0.5, 0.7]. This means that the true percent change is 
(0.7-0.5) x 100/0.5 which is 40%. The density distribution and QQ-plots are given in Figure 1 and Figure 2 and 
the summary statistics for varying correlation coefficient embedded in Figure 2. 
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Figure 1: Distribution for percent change from baseline under differing correlations 

 
The x-axis is restricted between (-700, 700) for visualization purpose. 

 
Figure 2: QQ-plot for checking the normality assumption on the percent change from baseline variable 

 
*P-value from Shapiro–Wilk normality test. SD: Standard deviation, Skw: Skewness, Krt: Kurtosis.  
The y-axis for the qq-plot is restricted between (-10000, 10000) to have better visuals. 
 

In distribution plot Figure 1, we can clearly observe the bias as the distribution is not centered around 
40% which is the true percent change. When we see the QQ-plots, it clearly tells us that the data distribution is 
skewed with long tails which indicates that it is not normally distributed. 
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Skewness for a normal distribution or any symmetric data is zero whereas negative or positive values 

indicate a skewed distribution.  We do not see a consistent pattern for different correlations, but skewness is non-
zero for any value of correlation. Also, Kurtosis is far from 3 indicating heavy tails in the distribution of percent 
change from baseline. Moreover, the Shapiro Wilk’s test for normality with statistically significant p-values also 
indicates that percent change data does not follow a Gaussian distribution for any of the correlations as appears in 
Figure 2. 

 

The primary goal of this research was to find an appropriate way to estimate the treatment effect and its 
confidence interval when the endpoint of interest is percent change form baseline which is primarily based on 
ratio of correlated Gaussian distributions. 
 

Methods 
 

1.1 Notation 
 

Let the outcome of interest be  at jth (j = 1, 2) time point for the ith patient receiving kth (k =t, r) 

treatment, k=t refers to test drug and k=r refers to reference drug also j=1 refers to baseline and j=2 refers to 
post-baseline. The percent change from baseline in kth arm for the ith patient will then be given as  

 
Let  be the population mean and  be the standard deviation at baseline and end of 

treatment period respectively for test drug with correlation .On similar lines let  be the population 

mean and  be the standard deviation at baseline and end of treatment period respectively for 

comparator drug with correlation .  follows bivariate Gaussian distribution. 
 

1.2 Framework 
 

Consider the ratio of post baseline vs baseline as below, the ratio ‘X’ would be area of 

 
 focus as adding or subtracting to calculate percent change from baseline using this ratio will just shift the location 
and multiplying will just change the scale, but the characteristic of the distribution will remain the same. The exact 

distribution given by Fieller (Fieller, 1932) for ratio of correlated Gaussian distribution variables is 

 

 

(2) 

 

 
 

 
where, 

& : are the means at post baseline and baseline respectively. 

& : are the standard deviations at post baseline and baseline respectively. 

 is the correlation between post baseline and baseline timepoints. 

confidence interval proposed by Fieller (Fieller, 1954) for the ratio  using above notations is 

given by 

 
This can also be expressed as, 
 

 

(2.1) 

Where  &  is students t-distribution with r degrees of freedom &  level of significance. 

https://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
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1.3 Approximation to ratio Distribution 
 

Hinkley (Hinkley, 1969) has given an approximation to the exact ratio distribution as below under the 
assumption that the denominator is always greater than zero and that coefficient of variation for the denominator 
tends towards 0. 

 

 

(3) 

where the definition of a  remain same as defined equation (2). 

Later Hinkley proposed correction (Hinkley, 1970) based on Marsaglia’s (Marsaglia, 1965) pointing out that the 
general ratio can be expressed as 

 

 

(4) 

 Marsaglia (Marsaglia, 1965) has shown that the correlated variables can be expressed in the standard form 

as  , where a, b ≥ 0 are constants with r and s being independent standard gaussian variates. He pointed out 

that the ratio    follows approximate gaussian distribution for (a, b) = (< 2.256, > 4) with  

 
 

Hayyas, et al., in their work (Jack, Donald, Nicolas, 1975) came up with normal approximation for the 
ratio of two gaussian variables which are not necessarily statistically independent under the conditions that the 
correlation is ≤ 0.5, the coefficient of variation for denominator variable < 0.09 and that for numerator variable is 
> 0.19.  They also claimed that Geary-Hinkley normal approximation to the transformation is robust if coefficient 
of variation for the denominator variable < 0.39 and that of numerator variable is >0.005.   

 

Geary (Geary, 1930) proposed a transformation to achieve normal approximation for the ratio under the 
condition that the denominator has a small coefficient of variation. 

 

Most recent work was proposed by Saralees (Saralees, 2006) who derived the distributions of the ratio’s 
when the joint distribution of the numerator and denominator variables are either “elliptically symmetric Pearson-
type II distribution” or “elliptically symmetric Pearson-type VII distribution” or “elliptically symmetric Kotz-type 
distribution”. Under the “elliptically symmetric Kotz-type distribution” with specific values to some parameters 
this type would reduce to a bivariate normal distribution. 

 

1.4 First and Second order Moments 
 

Getting closed form of the moments for the distributions suggested in equation (3), equation (4) and 
other authors is difficult to obtain. Also, the integral for these distributions doesn’t converge for all the 
combination of ratios which is also highlighted in the above section.  

 

1.5 Delta Method 
 

If distribution of random variable is not specifically of interest but rather the interest is in an estimate of a 
function of this random variable, Delta method (Casella, Berger, 2002) is helpful.  In situations, as we have for 
percent change from baseline or ratio of random variables, the distribution is complex. But our interest is in 
estimating the functions of these variables rather than the distribution. The delta method theorem states that if we 
have a sequence of random variables, 

 

 
Then for given function “g” for specific value of µ and existing nonzero continuous first order partial derivative  

 for which 
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1.6 Estimate of ratio using Delta Method 
 

When dealing with ratio of two correlated variables  the parametric function to estimate will be  

. The first order derivatives for parametric function  will be 

 

 
So, the estimate for the mean and variance of the correlated ratio will be given as 

 

 
(5) 

 

 
(6) 

For variance, the components will be estimated from the data as 

 
 

1.7 Estimate of treatment difference for % change from baseline 
 

We will use the notations used in the Notation and Framework section. 
Consider the percent change from baseline in the 2 groups 

 
k takes value “t” or “r” for test group and reference group respectively.  
Difference between the percent change from baseline in the two treatment groups will be given by  

 
So, the parametric function we need to estimate will be  

 
Using Delta method as stated in equation (5) we get, 

 

 
(7) 

Since we are looking at the difference of 2 independent ratios the pooled variance for the estimate will be given by  
 

 
(8) 

Now equation (8) is sum of variance of ratio’s which can be calculated using equation (6). 

 

1.8 Estimate of treatment difference for % change from baseline in presence of covariate 
 

We will use the notations used in the Notation and Framework section.Consider the ratio ‘X’ for post-
baseline vs baseline in each group to be a response variable. Now to get the least squares estimate in the presence 
of covariates, we get the least squares estimator function and find the delta method estimate for it. For e.g., 
consider the following model: 

  (9) 

Where  is the response from ith subject receiving kth treatment at cth center,  

D = treatment (Test or reference), we are here considering only two treatments in the design. 
C = center effect (center 1, center 2, ...),  
DC = interaction between Drug and center and  

 is the error term.  

Here  is the ratio of  i.e., post vs pre-baseline assessment. 

So, the estimated mean for the model in equation (9) will be given by  
  (10) 

The least squares mean (Lsmean) for the comparator group will be obtained by averaging over the levels of the 
covariate using the equation (10). 
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So, the comparator drug Lsmean in the presence of covariate will be given by,  
 

 
(11) 

Where is the expected effect in terms of ratio of post baseline vs pre baseline for reference drug at center 

‘c’ having ‘p’ centers. 
Similarly, the Test drug Lsmean in the presence of covariate will be given by,  

 
 

(12) 

Where is the expected effect in terms of ratio of post baseline vs pre baseline for test drug at center ‘c’ 

having ‘p’ centers. 
And hence the investigational test drug effect is the difference in the Lsmeans 
obtained in equation (11) and equation (12) given by,  
 

 

      (13) 

Using Delta method estimate as derived in equation (5) for equation (13) we get, 

 
 

 

(14) 

 
Variance for this estimate will be given by 

 

 

(15) 

 
Now since equation (15)  is sum of variance of ratio’s which can easily be calculated using equation (8). 

We obtain the Lsmean and its standard error (SE) using both the methods. Under Delta method Results are 
averaged over the levels of the covariate in both the arms and then the difference between the two arms is 
obtained. 
 

1.9 Expressing difference of 2 ratios as one ratio 
 

Consider the post-baseline and baseline variables  respectively with k=t for test drug and 

k=r for reference drug. Consider the difference in percent change from baseline for the 2 groups; 

 

Keeping the constant multiplier aside which can be adjusted later with the estimates, the ratio  

can be considered as single ratio of 2 correlated variates and using Fieller’s (1-α) confidence limits in equation (2.1) 
we can drive the confidence limits for this ratio. We need to find the variance covariance matrix for numerator 
and denominator, the expression for which is derived below. 

 

 

 
, 

, 

 

 

 
, 
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, 

 
 

1.10  Simulation with non-response and non-compliance 
 

We started with a sample size of 800 subjects (400 subjects per arm) for obtaining treatment difference of 
around 0.72 units to be simulated from Multivariate Gaussian distribution. We also introduced artificial 
missingness in the data to observe the behavior of the methods on the estimate. The missingness introduced in 
simulated data was roughly 10%, 15%, 20% and 25%. Subjects having post baseline assessment below median 
were randomly chosen to go missing with desired percent to reflect a scenario for missing due to lack of efficacy.  

 

The simulation was repeated 1000 times to reflect the robustness of the methods. For calculating Delta 
method estimate and SE in Table 1, equation (7) and equation (8) were used. 
For addressing missing data, we used 3 widely used techniques in clinical trials (Blankers, Koeter, Schippers, 
2010),  
1) “Complete case analysis”(CC): Here all the rows with complete data were used and the rows with missing data 
were ignored. 
2) “Last observation carried forward” (LOCF): Here the missing data was imputed using baseline data for the 
same id and then the complete data was used for analysis. 
3) “Multiple imputation” (MI): Here multiple imputation technique was used for imputing the missing data which 
created multiple complete datasets. Each time MI was run to create 10 copies of compete datasets each with 50 
iterations. Each of these datasets were analyzed separately and the results from each dataset were pooled using 
Rubin's rule (Rubin, 1987). 
 

2. Results 
 

Table 1: Simulation results taking into consideration correlation=0.8 without Covariate 

 Estimates for percent change from 
baseline using linear model 

 
Estimates using Delta method 

Data 
missing % 

Estimate 
(SE) 

95% CI Bias 
Estimate 

(SE) 
95% CI Bias 

 
 

0.53(0.25) (0.04,1.01) 0.189 0.72(0.24) (0.24,1.19) 0.001 

Complete Case 

10 0.58(0.26) (0.06,1.09) 0.142 0.76(0.24) (0.29,1.24) 0.046 

15 0.60(0.27) (0.08,1.13) 0.113 0.79(0.24) (0.32,1.26) 0.073 

20 0.63(0.27) (0.1,1.17) 0.084 0.82(0.24) (0.35,1.28) 0.099 

25 0.67(0.28) (0.13,1.21) 0.047 0.85(0.23) (0.39,1.30) 0.131 

Last observation carried forward 

10 0.52(0.24) (0.06,0.98) 0.199 0.69(0.23) (0.24,1.14) 0.03 

15 0.51(0.23) (0.07,0.96) 0.203 0.67(0.22) (0.24,1.11) 0.044 

20 0.51(0.22) (0.08,0.93) 0.211 0.66(0.21) (0.24,1.07) 0.061 

25 0.50(0.21) (0.1,0.91) 0.215 0.64(0.20) (0.25,1.04) 0.075 

Multiple Imputation 

10 0.56(0.27) (0.02,1.1) 0.155 0.75(0.25) (0.25,1.24) 0.03 

15 0.58(0.28) (0.03,1.14) 0.133 0.77(0.26) (0.26,1.27) 0.049 

20 0.61(0.29) (0.04,1.19) 0.105 0.79(0.26) (0.29,1.30) 0.073 

25 0.64(0.30) (0.06,1.22) 0.073 0.82(0.26) (0.32,1.32) 0.1 
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The above exercise was also repeated by adding a covariate in the model. We chose here a binary type of 
categorical covariate and kept the treatment effect around 0.79%. We fitted the model with percent change from 
baseline as dependent variable with treatment and covariate as independent variables and obtained the Lsmean 
with its SE. The estimate and its SE for Delta method in Table 2 were calculated using equation (14) and equation 
(15). For both the methods absolute bias and 95% confidence interval (95% CI, mean ± 1.96*SE) is provided. 
This was done with the same sample size of 400 per treatment group. 

 
Table 2: Simulation results taking into consideration correlation=0.8 with Covariate 

 Estimates for percent change from 
baseline using linear model 

 
Estimates using Delta method 

Data 
missing % 

Lsmean 
Estimate 

 (SE) 

95% CI Bias 
Lsmean 
Estimate  

(SE) 

95% CI Bias 

 
0.54(0.52) (-0.47,1.56) 0.249 0.79(0.49) (-0.17,1.75) 0.001 

Complete Case 

10 0.55(0.55) (-0.53,1.63) 0.237 0.79(0.49) (-0.16,1.75) 0.005 

15 0.55(0.57) (-0.58,1.67) 0.243 0.78(0.49) (-0.18,1.74) 0.008 

20 0.56(0.59) (-0.60,1.72) 0.229 0.79(0.49) (-0.17,1.75) 0.003 

25 0.57(0.62) (-0.65,1.78) 0.224 0.80(0.49) (-0.16,1.75) 0.007 

Last observation carried forward 

10 0.50(0.96) (-1.38,2.37) 0.292 0.75(0.93) (-1.07,2.56) 0.042 

15 0.46(1.06) (-1.61,2.53) 0.325 0.73(1.02) (-1.28,2.73) 0.064 

20 0.45(1.11) (-1.72,2.62) 0.34 0.71(1.08) (-1.40,2.82) 0.083 

25 0.43(1.12) (-1.78,2.63) 0.364 0.68(1.09) (-1.45,2.82) 0.105 

Multiple Imputation 

10 0.51(0.54) (-0.55,1.57) 0.279 0.74(0.48) (-0.21,1.68) 0.051 

15 0.47(0.55) (-0.61,1.54) 0.322 0.71(0.48) (-0.23,1.64) 0.084 

20 0.44(0.56) (-0.66,1.54) 0.348 0.67(0.48) (-0.26,1.61) 0.117 

25 0.40(0.57) (-0.72,1.51) 0.391 0.63(0.47) (-0.30,1.56) 0.158 

       

In Table 2, due to the addition of the covariate, the sample size of 400 per treatment group is not enough 
to detect the true difference of 0.72 as all confidence intervals include 0. We ran additional simulation with sample 
size of 800 per treatment group and results are given in Table 3 below.  
 

Table 3: Simulation results taking into consideration correlation=0.8 with Covariate and 800 subjects 

 Estimates for percent change from 
baseline using linear model 

Estimates using Delta method 

Data 
missing % 

Lsmean 
Estimate  

(SE) 

95% CI Bias 
Lsmean 
Estimate  

(SE) 

95% CI Bias 

 
0.54 (0.37) (-0.18,1.26) 0.252 0.79 (0.35) (0.11,1.47) 0.001 

Complete Case 

10 0.54 (0.39) (-0.22,1.31) 0.248 0.79 (0.35) (0.11,1.47) 0.002 

15 0.55 (0.41) (-0.25,1.34) 0.243 0.79 (0.35) (0.11,1.47) 0.001 

20 0.55 (0.42) (-0.27,1.37) 0.239 0.79 (0.35) (0.11,1.47) 0.001 

25 0.55 (0.44) (-0.31,1.41) 0.237 0.79 (0.35) (0.11,1.47) 0.002 
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Last observation carried forward 

10 0.49 (0.68) (-0.84,1.82) 0.302 0.75 (0.66) (-0.54,2.03) 0.044 

15 0.46 (0.75) (-1,1.93) 0.325 0.72 (0.72) (-0.70,2.14) 0.066 

20 0.44 (0.78) (-1.10,1.98) 0.349 0.70 (0.76) (-0.79,2.19) 0.087 

25 0.41 (0.79) (-1.14,1.97) 0.375 0.68 (0.77) (-0.83,2.19) 0.109 

Multiple Imputation 

10 0.50 (0.38) (-0.25,1.25) 0.293 0.71 (0.34) (0.04,1.37) 0.081 

15 0.47 (0.39) (-0.29,1.23) 0.32 0.71 (0.34) (0.04,1.37) 0.081 

20 0.43 (0.40) (-0.35,1.21) 0.357 0.71 (0.34) (0.04,1.37) 0.0806 

25 0.39 (0.41) (-0.40,1.19) 0.397 0.71 (0.34) (0.04,1.37) 0.0806 

       

In all the tables (Table 1, Table 2, Table 3) with simulation results we have added a column for absolute 
bias ignoring the direction of bias for both delta method as well as linear model estimates. The bias represents the 
difference between the observed and expected treatment effects and was calculated by subtracting the expected 
difference between the groups from the observed difference between the groups. 
 

3. Discussion 
 

In Table 1, Table 2 and Table 3 delta method clearly shows significantly lesser bias and smaller standard 
error when the end point is percent change from baseline as compared to calculating percent change for each 
subject and fitting linear model. In case of missingness in the data, delta method picks up significance for CC and 
MI methods compared to traditional method. LOCF method is least powerful in detecting the significance. 
Proposed method from the above tables shows delta method to perform better then calculating percent change 
for each patient as response and then performing linear modelling. For missing data, delta method using complete 
case analyses or Multiple imputation should be preferred over LOCF method. We have only considered the case 
with linear relationship; further exploration might be required to see the performance of the method in other 
settings. 

 

We also tried to calculate the confidence intervals for the difference between two drugs on percent 
change from baseline as endpoint using Fieller’s (1 − α) confidence for ratio (Fieller,1954). The idea was to 
express the difference in 2 ratios as a single ratio, get the variance covariance matrix (expression in Appendix) for 
this transformed ratio and then use the Fieller’s (1 − α) confidence interval for ratio specified in equation (2.1). 
The intervals obtained for running the simulation for complete data were (-10.269, 10.103) which were too wide 
because of the week correlation between the numerator & denominator and too high variance of the numerator. 
Delta method and Fieller’s method both provide good estimates when the correlation between the numerator and 
denominator is high (Beyene, 2005), but Fieller’s (1 − α) confidence interval expression produces much wider 
length confidence interval when the correlation between numerator and denominator is week. 

 

The sample size calculation for percent change from baseline having ratio of correlated variates is also a 
challenge which can be future scope of work in this area. 
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